

From Demagnetizing to Curiezing

www.maurermagnetic.com

Definition

Curiezing: The ultimate Demagnetizing

- > Heating material up to the Curie temperature accomplishes the total loss of magnetism
- > This effect was reported by Pierre Curie (1859-1906)
- > We call our demagnetizing method Curiezing in honour of Pierre Curie

Definition

curiezing curiezation curiezed

- A method for complete demagnetization of ferromagnetic materials by means of a specific process (Maurer Degaussing)
- A high precision, closely controlled demagnetizing process
- > Preferably in a magnetically shielded environment

Definition

The microscopic scale model of magnetism

- > The magnetic dipoles are directed randomly
- > The workpiece is not magnetized
- > The magnetic dipoles are all aligned in a specific direction
- > The workpiece is magnetized

The metallic model of magnetism

> 10...1000 domains/inch

> curiezed

 Orientation of domains rectified field vectors cause measurable magnetism on the surface

Magnetism by domain displacement

Flux short circuit in balance, outside magnetically neutral

Magnetism by domain displacement

- At a small domain displacement, magnetism is reversible
- An external magnetic field, e.g. Earth's field, induces temporarily some weak magnetism

Magnetism by domain displacement

- At a large wall displacement, accomplished by a strong external magnetic field, magnetic domains merge throughout
- > This kind of magnetism is irreversible

Magnetism by domain displacement

>

Jump wise magnetization by Barkhausen step

Hard magnetic zone

> In material embedded hard magnetic bodies

inclusions, foreign materials, cavities

Hysteresis

Magnetically <u>soft</u> basic material

> Magnetically <u>hard</u> inclusions, cavities

Argumentation

Known methods such as:

- > low-frequency generators
- > counter magnetizing (knock-down)
- > stepwise magnetizing DC field systems

will not **curieze** the magnetic structure

Argumentation

Curiezed magnetic structure eliminates phenomena of residual magnetism

- > Avoid magnetic hydrogen embrittlement
- > Eliminate electrical arching in turbines
- > Mitigate strong wear of sliding seals
- > Avoid early failures of ball bearings
- Assure reliable signal for Bently test, inductive encoders
- Accomplish low magnetic signature of Marine, Space structures

Comparison of technologies

		Field strength					
method			Effective range				
	type		Homogeneity of the field				
				Decrease precition			
field drop by increase in distance	coil					·····	
	yoke / plate						
pulse, damped oscillation	coil	4	4	4		Λ	
	yoke / plate	4				, 11,000	
pulse, with energy feeding	coil	đ	4	4	4		
	yoke / plate	4			4		

Argumentation

Additional use

- > Carbide tools and molds
- Crankshafts, camshafts, connecting rods, assemblies
- > Machine tools, presses, turbines

Summary

- > Automatic degaussing process
- > Bulk treatment
- Fast, productive and energy efficient
- > Process reliability / reproducibility
- Curiezed magnetic structure, deeper than earth magnetic field <0.5 Gauss</p>

Benefits of curiezed material by demagnetizers

- No re-magnetizing without external magnetic field
- Various applications benefit from the very small magnetic domain structure
- Curiezed magnetic structure contains very low level of residual magnetism, deeper than earth magnetic field <0.5 Gauss</p>

^{0...1000} domains/inch